Extensions 1→N→G→Q→1 with N=C22×C4 and Q=D15

Direct product G=N×Q with N=C22×C4 and Q=D15
dρLabelID
C22×C4×D15240C2^2xC4xD15480,1166

Semidirect products G=N:Q with N=C22×C4 and Q=D15
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1D15 = C4×C5⋊S4φ: D15/C5S3 ⊆ Aut C22×C4606(C2^2xC4):1D15480,1025
(C22×C4)⋊2D15 = C20⋊S4φ: D15/C5S3 ⊆ Aut C22×C4606+(C2^2xC4):2D15480,1026
(C22×C4)⋊3D15 = C2×D303C4φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4):3D15480,892
(C22×C4)⋊4D15 = C4×C157D4φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4):4D15480,893
(C22×C4)⋊5D15 = C23.28D30φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4):5D15480,894
(C22×C4)⋊6D15 = C6029D4φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4):6D15480,895
(C22×C4)⋊7D15 = C22×D60φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4):7D15480,1167
(C22×C4)⋊8D15 = C2×D6011C2φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4):8D15480,1168

Non-split extensions G=N.Q with N=C22×C4 and Q=D15
extensionφ:Q→Aut NdρLabelID
(C22×C4).1D15 = C20.S4φ: D15/C5S3 ⊆ Aut C22×C41206(C2^2xC4).1D15480,259
(C22×C4).2D15 = C20.1S4φ: D15/C5S3 ⊆ Aut C22×C41206-(C2^2xC4).2D15480,1024
(C22×C4).3D15 = C60.212D4φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4).3D15480,190
(C22×C4).4D15 = C30.29C42φ: D15/C15C2 ⊆ Aut C22×C4480(C2^2xC4).4D15480,191
(C22×C4).5D15 = C2×C30.4Q8φ: D15/C15C2 ⊆ Aut C22×C4480(C2^2xC4).5D15480,888
(C22×C4).6D15 = C2×C60.7C4φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4).6D15480,886
(C22×C4).7D15 = C60.205D4φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4).7D15480,889
(C22×C4).8D15 = C2×C605C4φ: D15/C15C2 ⊆ Aut C22×C4480(C2^2xC4).8D15480,890
(C22×C4).9D15 = C23.26D30φ: D15/C15C2 ⊆ Aut C22×C4240(C2^2xC4).9D15480,891
(C22×C4).10D15 = C22×Dic30φ: D15/C15C2 ⊆ Aut C22×C4480(C2^2xC4).10D15480,1165
(C22×C4).11D15 = C22×C153C8central extension (φ=1)480(C2^2xC4).11D15480,885
(C22×C4).12D15 = C2×C4×Dic15central extension (φ=1)480(C2^2xC4).12D15480,887

׿
×
𝔽